Devity matrix
$$\widehat{\mathbb{S}} = \widehat{\mathbb{Z}} \ p_{\mathbb{X}} \ |\mathbb{Y}_{n} > < \mathbb{Y}_{n}|$$

it $\frac{2\Re}{9\epsilon} = [\widehat{\mathbb{H}}, \widehat{\mathbb{S}}] \implies \text{steady state } [\widehat{\mathbb{H}}, \widehat{\mathbb{J}}] = 0$
 $\implies \text{advocates } for \widehat{\mathbb{S}} = \widehat{\mathbb{I}}(\widehat{\mathbb{H}})$
 $\widehat{\mathbb{I}}_{n} = \frac{4}{2} = [\widehat{\mathbb{H}} \ \widehat{\mathbb{I}}_{n}] = \sum \text{advocates } for \widehat{\mathbb{S}} = \widehat{\mathbb{I}}(\widehat{\mathbb{H}})$
 $\widehat{\mathbb{I}}_{n} = \widehat{\mathbb{I}}_{n} = -\widehat{\mathbb{I}}_{n} \ (=) \ \widehat{\mathbb{S}} = \frac{4}{2} = -\widehat{\mathbb{P}}^{\widehat{\mathbb{H}}}$
 $T_{n}(\widehat{\mathbb{S}}) = \widehat{\mathbb{I}} = \sum \overline{\mathbb{I}}_{n}(e^{-\widehat{\mathbb{P}}\widehat{\mathbb{H}}}) = \overline{\mathbb{Z}} \ e^{-\widehat{\mathbb{P}}\widehat{\mathbb{H}}} = \sum \text{validus the approach of chapters!}$
 $\widehat{\mathbb{S}} = \frac{4}{6} e^{-\widehat{\mathbb{P}}\widehat{\mathbb{H}} + \widehat{\mathbb{P}}_{n}\widehat{\mathbb{I}}} (\widehat{\mathbb{I}}_{n}) = \widehat{\mathbb{I}}_{n}(e^{-\widehat{\mathbb{P}}\widehat{\mathbb{H}}) = \overline{\mathbb{I}}_{n}(e^{-\widehat{\mathbb{P}}\widehat{\mathbb{H}}}) = [\widehat{\mathbb{I}}_{n}(\widehat{\mathbb{I}},\widehat{\mathbb{H}})] = 0 \ \text{approach of chapters!}$
 $\widehat{\mathbb{I}} = \widehat{\mathbb{I}}_{n}(\widehat{\mathbb{I}}\widehat{\mathbb{H}}) = \overline{\mathbb{I}}_{n}(e^{-\widehat{\mathbb{P}}\widehat{\mathbb{H}} + \widehat{\mathbb{P}}^{\widehat{\mathbb{H}}}); [\widehat{\mathbb{I}}_{n} q_{\min} \otimes [\widehat{\mathbb{L}}\widehat{\mathbb{H}},\widehat{\mathbb{H}}] = 0 \ \text{approach of chapters!}$
 $\widehat{\mathbb{I}} = -\widehat{\mathbb{I}}_{n}\widehat{\mathbb{I}} + \widehat{\mathbb{I}} = \widehat{\mathbb{I}}_{n}(e^{-\widehat{\mathbb{P}}\widehat{\mathbb{H}}}) = -\frac{1}{2} \partial_{\widehat{\mathbb{P}}} \ \hat{\mathbb{I}}_{n}(e^{-\widehat{\mathbb{P}}\widehat{\mathbb{H}}) = -\frac{1}{2} \partial_{\widehat{\mathbb{P}}} \mathbb{I}_{n}(e^{-\widehat{\mathbb{P}}\widehat{\mathbb{H}}) = -\frac{1}{2} \partial_{\widehat{\mathbb{H}}} \mathbb{I}_{n}(e^{-\widehat{\mathbb{H}}) = -\frac{1}{2} \partial_{\widehat{\mathbb{H$

$$=\frac{1}{V}\exp\left[-\frac{\pi(\pi^{2}-\pi^{2})^{2}}{2\Lambda^{2}}\right] \quad \text{fince } \frac{2\pi^{2}}{MhT} = \frac{1}{\pi} \frac{h^{2}}{2\pi mhT} \qquad (3)$$

* < x 1 So 1x> =
$$\frac{1}{v}$$
 as expected
* The shitslical mixtures devailed by the counical 3 comprise states that we
quartum superporting the states [1x>3. At temperatures 7, the particle is a wave
payment speaked over a scale given by de Broglie thenal wave length.
* Take an observable if that is not diagonal in [1x>3, if 1x> = $\int d\vec{x}'' f(x-v'') |x''>$
Then $\langle \hat{f} \rangle_{stat} = In(\hat{g} \hat{f}) = \int d\vec{x} d\vec{x}' < x |\hat{f}|x'| < x' |\hat{f}|x'| = \int d\vec{x} d\vec{x}' = \frac{z}{2n^2}$
If instead we consider the 3 that describes a shalistical mixture of 1x> with $\vec{x} = 0$, such that $f(\vec{u}) = \delta(\vec{u} + v')$
For instead, consider the translation operator $T_{\vec{u}} = 1 \times 4a$, with $\vec{x} = 0$, such that $f(\vec{u}) = \delta(\vec{u} + \vec{x})$
then $\langle T_{\vec{u}} \rangle = 2xp[-\frac{z}{2n^2}]$ in the commic of example. Without the off
diagonal element, $\langle T_{\vec{u}} \rangle = 0$ since $\langle x|x+a \rangle = 0$ for $a \neq 0$.

6.2) Quantum gases To characterize the statistical properties of a system, we thus need to build \hat{g} . <u>Canonical ensemble</u> $\hat{g} = \frac{1}{2} \sum_{m} e^{-\beta \epsilon_{m}} i_{m} \ge \epsilon_{m}$ $= 0 \text{ curstanct } i_{m} \ge \hat{f}_{cn} \propto g_{0} \le \hat{f} \quad non-interacting particles.$ <u>Sequencity properties</u> If particles are undistinguishable $P(x_{i_{1}}x_{2},...,x_{n}) = P(x_{i_{1}}x_{i_{1}},...,x_{n})$

$$= \int |\Psi(x_{i_{1}} x_{i_{1}} - x_{N})|^{2} = |\Psi(x_{2}, x_{i_{1}} - x_{N})|^{2} = \int \Psi(x_{i_{1}} x_{i_{1}} - x_{N}) = e^{i0} \Psi(x_{i_{1}} x_{2_{1}} - x_{N}) = e^{i0} \Psi(x_{i_{1}} x_{2_{1}} - x_{N}) = e^{i0} - 1$$
Since swapping $x_{i_{1}} dx_{2}$ twice leads back to $x_{i_{1}} x_{2_{1}} - x_{N} = e^{2i0} - 1 = 0$ or E .

•

•

Spin statistics theorem: Powericles with intrinsic spin s we such that
s integer c> bosans & 0=0
$$\implies$$
 4 fully symmetric
s hulf integer c> funions & 0= \eqsim 4 fully cultisymmetric
Proof: Pauli, 1940, [Phys. Rev. 54, 716, (1940)]
Eigenstates: let us denote by 1/1> the sigenstates of a single pauticl.
 $1h_1 - h_N > = 14_1 > \otimes 1h_2 > \otimes \dots \otimes 1h_N > is a basis of the full Hilbert space.$
that hus no particular symmetry properties.
* let us introduce $\gamma = d(n+1)$ for bosons d $\gamma = -1(n'-1)$ for fermion. We can
build the caresponding eigenstates for on N-particle system
 $\left[(\Psi)_{n_1}^{-1} = \frac{1}{\sqrt{N_n}} \sum_{T \in T(N)}^{\infty} (\gamma)^{P(T)} 1h_{T(1)} - h_{T(N)} > (4), when$

Normalizatim:

5

* quantum son: the state itself is symmetrized concertly. Thue is
only OND state with
$$M_{4}$$
 particle is states 1.0
=0 The $(c^{pH}) = \sum e^{-p\sum M_{4}C_{4}}$; ε_{4} the decays of states 1.4
=0 The $(c^{pH}) = \sum e^{-p\sum M_{4}C_{4}}$; ε_{4} the decays of states 1.4
=0 No need to cancel for overconting afterwards, the trace include
whet is needed.
* Still $\sum M_{4} = N$ leads to a some what pain full contained sum
=0 grand comminated decontrained for C_{4} and C_{4}
 $\varepsilon_{1} = C_{4} \left[\frac{2}{N_{4}} - \frac{2}{N_{4}} - \frac{2}{N_{4}} - \frac{2}{N_{4}} - \frac{2}{N_{4}} + \frac{2}{N_{4}} - \frac{2}{N_{4}} + \frac{2}{N_{4}} - \frac{2}{N_{4}} + \frac{2}{N_{4}} - \frac{2}{N_{4}} + \frac{2}{$